跳到主要内容

This site uses cookies to provide you with a better user experience. 通过使用ibiggroup.. Com表示您接受我们对cookies的使用.了解更多

What the Future Holds for Transit Fleet Electrification in North America

公共交通电气化提供了切实可行的途径, 可衡量的手段是政府为采取减少温室气体排放的持续承诺和为改善地球健康作出贡献建立坚实的商业案例. 老主任,. 实践主管,运输技术, 道格•帕克, reflects on the future of transit fleet electrification in North America, as 公共交通 agencies transition to a 零排放模型.

By

日期

2022年6月2日

In the final instalment of our transit electrification series, 我想就北美运输车队电气化的未来提出一些想法, 随着越来越多的公共交通机构努力向环境可持续发展过渡, 零排放模型.

When thinking about where zero-emission transit is headed, 请记住,汽车电气化技术是 不断发展和改进. So, 每个运输机构, no matter how far along in their fleet electrification journey, must still revisit and re-evaluate their plans every few years. 的 未来的资本投资和运营成本 will be heavily influenced by how electrification technology evolves during that time.

虽然没有人能保证这项技术在未来几年将如何发展, there are enough indicators to give a good sense of the direction things are headed.

更大的电池容量

First, battery-electric bus (BEB) charge capacity is certain to continue to increase, 这意味着公交车和其他电动交通工具一次充电就能比现在行驶得更远. As one example, California-based commercial electric bus manufacturer Proterra 最近宣布,他们将在2023年建造一辆40英尺长的电动公交巴士,车载电池容量为738千瓦时。.

这延续了最近主要客车制造商几乎每年都宣布增加电池容量的趋势. Proterra声称,这将在不增加车辆重量的情况下实现,以避免增加每公里的能源消耗. 如果平均能源使用量为1.5千瓦时/公里(假设80%的可用电池容量),这将相当于近400公里的范围. 的re may be an ultimate limit on practical bus battery capacity, 但是在这一点上, it is not clear when or at what point such a maximum might be reached.

请加大力度

 

容量增加的电池仍然需要在相同的充电时间内充电, which will result in the need for a higher-powered charging infrastructure. 例如, a 600-kWh battery today is often currently charged with a 150-kW charger. To charge an 800-kWh battery within the same duration would require a roughly 200-kW charger. 在大多数情况下, 这也需要相应增加电网连接容量和总体用电量.

 

注意体重

 

T未来的电动巴士将需要控制其重量,即使它们的电池容量增加. 许多t交通运输机构已经需要向市政当局申请豁免当地道路上车辆最大轴重的规定. 通过包含BEB权重, 车队的运营将受益于避免公交车千瓦时/公里效率的降低,并能够利用公交车因其更高的电池电量而增加的续航能力. 在夜间充电之间能够走得更远,将允许交通机构减少沿途充电站的数量,以支持更长的服务街区.

 

无需连接即可充电

A current technological development very likely to gain increased use soon is 无线途中充电. This development uses large in-ground charging pads to recharge a BEB while paused over it, 不需要有线连接. 无线充电技术广泛应用的一个挑战是设备供应商之间缺乏标准化. 例如, 配备了供应商a的无线充电技术的公共汽车将无法与供应商B充电, 反之亦然. As more transit agencies call for standardized solutions, 这种情况可能会改变, 允许代理商从多个供应商处购买充电站,或者与其他代理商进行潜在的成本分摊,这些代理商的充电站通过同一个巴士终点站. A similar evolution towards standardization was seen in the past for other types of chargers.

未来几年需要关注的电动巴士技术的其他关键发展包括:

  • 电热泵技术的改进 以减少加热和空调对BEB主推进电池系统的能量消耗. 欧洲的一些中转机构 已经尝试过 在电动公交车上使用柴油或丙烷燃料的热泵,而其他人则在考虑低排放 CO2 热泵 作为一种可能的解决方案.
  • 电网本身的“绿色化”. If BEBs are truly going to adhere to a sustainable zero-emission target, the electricity grid supplying the energy to charge BEBs must not produce large amounts of CO2 emissions at coal, diesel or gas-fired generating stations. Some jurisdictions have obvious advantages in this area, but when clean-sourced electric energy is not available to a transit agency, 它破坏了电气化的总体意图.
  • 更多地采用f燃料电池电动客车(FCEB)技术, which combines a zero GHG emission hydrogen fuel cell with a small battery. 当更多的气候中性“绿色氢”在市场上以更具竞争力的价格出现时,fceb的趋势可能会加速. 然而, with green hydrogen still in limited supply and relatively expensive in many areas, BEBs will continue to dominate the electric bus market for some time. One interesting potential trend is the “battery-dominant” FCEB, 哪一种结合了燃料电池和更大的电池, 允许燃料电池作为BEB范围扩展器.
  • 日益重要的 keeping the overall electrified fleet charging operation at maximum efficiency through effective software tools to maintain an adaptable overall charging plan in real-time. 服务区块能源使用建模可用于连续预测公共汽车在整个服务区块的充电水平, based on the current state of charge and current traffic/weather conditions. 每辆车的供电时间和电量可以随着时间的推移而调整,以避免用电高峰,同时仍能确保足够的电量来支持这项服务. 为了监测和分析所有可能影响电动车队日常运营计划的现实世界变量, 从BEB车队转型实施的最初阶段开始,车队运营经理就需要拥有合适的基于智能的软件.

结论

虽然零排放电动公交车的运行和充电技术不断涌现和发展, 从长远来看,将城市公交车队从柴油或其他化石燃料转变为清洁能源解决方案将节省大量运营成本.

更重要的是, 公共交通电气化提供了切实可行的途径, 可衡量的手段是政府为采取减少温室气体排放的持续承诺和为改善地球健康作出贡献建立坚实的商业案例.

 If you missed our previous 的见解 on transit electrification, catch up here:

  1. Why the Transition to Bus Fleet Electrification is Accelerating Around the Globe
  2. 的优点, 电池电动公交车与氢燃料电池电动公交车的缺点和其他战略考虑
  3. Block Energy Modelling as the Foundation for Success in Transit Fleet Electrification

道格·帕克是 运输 系统工程师和规划师, specializing in assisting public agencies with applying advanced technology. He is a recognized leader in transit technology consulting, working closely with the transit technology consulting practice across IBI Group.

他33年的经验涵盖了所有领域 公共交通 模式, 包括铁路, 固定路线巴士, 快速公交, 渡轮, 需求响应式运输, 农村交通. 它还包括全方位的运输技术, 包括那些支持规划的人, 运营管理, 公共信息, 收益管理, 安全, 商业智能.

道格参与了许多计划, research and evaluation efforts including regional deployment program development, 体系结构, 评估, and several Transit Cooperative Research Program projects.

道格·帕克的大头照

写的 道格•帕克

导演|高级. 实践主管,运输技术
在多伦多
AG真人试玩网址AG真人试玩网址